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1. Introduction. Many physical problems require the solution of
partial differential equations on some infinite domain (~ with boundary
3fl. An example is given in fig. 1.

B~ flJ 
1 -

fig. 1.

For computational reasons CZ is replaced by a finite domain

B1 ~
x 0  x~a B3

fig. 2.

and the problem arises to specify boundary conditions at the artificial
boundary B2. Consider, for example , the differential equations for a

C nonviscous fluid which at si9souie speed leaves (2.~ through the
boundary B2. Then there is one characteristic which points back into

• . the region Q1 and therefore one boundary condition has to be given.

o In general , no detailed knovle~~&~~t the solution on 82 is given and
other principles have to be applied For example, if one solves the
problem by a difference approximation then one often uses upstream difte—
rencing on B~ for all the dependent variables (s ee for example Roache
[h)) .  This procedure is sometimes combined with overspecifying the
solution on the boundary B1.

Recently, B. Eugquiat end A. Majda (1] have proposed another
principle, namely, to specify the boundary conditions on B2 in such
a v~~ that no reflection takes place.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0:7 
-



—1.2—

11

In this paper we want to investigate when these principles
garantuee that the solution of the simplified problem is close to
the solution of the original one. A necessary óondition for this is
that in £~ — the solution of the original problem only changes
slowly with respect to space and time. Therefore we can linearize the
problem end ye ass~~e that the linearized. equations represent a
hyperbolic first order system. This is true for ideal flow problems.

In the next section we consider the model equation

= , x >  0, t > 0,
(1.1)

u(x ,O) ~.f(x) for t = 0,

on the half line 0 < x < ~ and approximate it by

~v/~x, 0 < x < a, t ) 0,
(1.2)

v(x,O) f(x) for t 0,

on the finite interval 0 < x < a. The last problem is well posed if
we specify boundary conditions at x a (but not at x = 0).

We solve (1.2) by the Lax—Wendroff difference scheme. As boundary

conditions for the difference approximation we have a number of diffe-

rent poesibili~~~ .

- • a) For x ~~~ ~ either specify v, for example,

v(o,t) 0,

or we use an extrapolation procedure

(~~~)~v(o,t) — 0 , hD~v(O,t)  — v( h,t ) — v(O,t).

For p 2 this is the usual upstream differencing.

b) For x a we have the analogous possibilities.

We obtain the following results.

L .
~~~~~~~ 
_ _ _

-__ _ _ _ _

• 

~~~~~~~~~~~~~~
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1.) For x = 0 one shall not overspecify, i.e. v shell not be

given. Upstream differencing gives good results.

2) If f(x) ~ eon~t. for x> a then

(1.3) hD_v(a ,t)  — v(a,t) — v(a—h,t) 0

can be used. Upstream differencing at x — a can give completely
wrong results.

3) The principle of no reflection at x a is useful only if
f ( x ) u O  for x > a .

In section 3 we show that the corresponding conclusions hold for

systems

L
• av/at = A av/ax

‘where A is a constant matrix.

In section ie we make a thorough investigation of systems with
variable coefficients

au/at — A(x ,t )au/ax.

We show that extrapolation procedures or the principle of no reflection

is useful only if A(x,t) is essentially independent of x for x > a.
If one knows the asymptotic behavior of A(x,t), for example,

£ (x ,t) A0 + x 2A1
(x ,t)

• then one can derive new principles, which are useful for steady state

(
~ 

calculations.

The last section is concerned with systems

au/at - A au/ax + B au/ay

in two space dimensions. The above principles are useful if B au/ay
is small, i.e. the problem is essentially one dimensional . For the
case that B is not smell we again construct new principles.
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In many applications the time dependent equations are uted to
obtain the steady state solution. We shall also study the effect of
our boundary conditions on the convergence rate to the steady state.

C

C
I

_

c
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2. The model problem. We went to solve the differential equation
(1.2) by the Lax-Wendroff scheme. Let k> 0, h — a/N , N natural
number, denote the time step and the space step respectively. The grid—
points are given by r

~ 
vh, t~ = ak , . u—O~l,...,N ; n 0 ,l,2,... ;

and the gridfuntions by w = w(z~,.t~ ). We approximate (1.2) by

( I+kD04-D~D_ )w~~ , 
0 < V < N,

• (2.1)

wV
0 - f V ,

where

C 
2hDow~ 

- ~~~~ - w~~1, bD+v~ w~~1 
— ~~~ hD y1~ ~~ -

denote the usual centered , forward and backward difference operators
respectively. We assume that k/h ‘C 1, which grantuees that the approxi-
mation is dissipative.

We first study the case that proper boundary conditions

(2.2) (hD )P ~0
n 0 , p > 1, w~~ = g

are given. Then the approximation (2.1), (2.2) is stable ( see (2] ) end
in every finite time interval the solution of (2.1), (2.2) converges

for h + 0 to the corresponding solution of (1.2) which satisfies the

U boundary condition

• (2.3) v(a,t) — g.

• We niv study the behaviourof (2.1), (2.2) for t ~ with fixed k,h.
We have

Theorem 2.1. Let k,h be fixed. The solutions of (2.1), (2.2) con—
verge exponent iaU~y fast to the steady state solution

(2.h) v~~ g ,

as a,..

—~
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Proof. We write (2.1), (2.2) itt matrix form

(2.5) = Q~~~ +
~~~~, ~~~

‘
= (0 ,o,...,0,g ) 1

~rhere = (w0,.. ~
VN~

’ is a column vector and Q an N+l N+l matrix.

it is well known that the solutions of (2.1), (2.2) converge to the

• steady state Solution (2.le) if and. only if the eigenvalues z of Q

satisfy Izt  C l~ The eigensolutions • have the form

~ C7
1
K
1~ 

+ a2
K~~~, v 0 ,1,2,~~.,N, K1~K2

where ic1, K 2 are the roots of

(2.6) zc = IC + A (K2—l) + ~~

~ must satisfy the homogeneous boundary conditions (2.2), i.e.

+ a2(K2-l)~ 
= 0, a

1
K
1
N 
+ C7

2
K
2
N 

=

This system has a nontrivial solution if and only if

(2.7) (K1—1)~ 
K2

N 
= K N(K_ 1)P

An easy calculation shows that for sufficiently small h the relations

(2.6), (2.7) imply

0 IzI ‘C 1 — 6 , 6 > 0 independent of h

for all elgenvalues of Q. This proves the theorem.

We next investigate the case where we use extrapolation also at
x — a, i.e. we replace (2.2) by

(2.8) hD~v0~ bD+wN_l~ 0 . (For simplicity we set p.’i.)

In this case we have
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Theorem 2 2 .  Assume that v(x ,0) f(x) is a smooth function with
df(a)/ dx = 0. Then the solutions of (2.1), (2.8) converge for h -

~~ 0

to the solution of (1.2) which satisfies the boundary condition

(2.9) v(a ,t) = f(a)

Proof. Let

— D+w~~, V=0 ,l ,2,. .. ,N—l.
I Then is the solution of (2.1) which satisfies the initial and

boundary conditions

, V 1  ,2,.. . ,N—2 ; ;
0

fl 
= ;n  0, n0 ,). ,2

S. Parter (3] has shown that the are uniformly bounded and for
any 6> 0

(2.10) sup Iy(x~
,t )— r~1 0 as h - ’ 0

6<x.~~a,0<t~~ T n V

Here y is the solution of (1.2) with initial and boundary conditions

y(x,0) = dt(x)/dx , y(a ,t) = 0 = df(a)/dx

Therefore we have also that
C

u r n  DOwN l ~ = y(a ,t ) — 0 , u r n  bD+D VN = 0n _

end by (2.l)
fl+l a

k — 

w~_1 
— 0 , i.e. u r n  UN 1  — f(a)

b.0 h-’0 .

and by (2.10 )

—~.•— _______________________________________________________________________
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sup Iv(x
~
,t)—w (X

~
,t)l • 0 as h-~ 0,

(2.1 1) 6 < a ,0~t~~ T 

a
v(x ,t ) — f(a)  — f y(~ ,t)d~x

v(x,t) is the solution of (2.1) which satisfies the boundary condition
- (2.9). Also, for 0 < x < 6 we have

Iv(x
~
,t )_w (x

~
,t)I c ~vG,t )— wG c,t)~ + Iv(x

~
,t)—vGc,t)I

( (2.12)
+ Iw( ,t)—w (x

~
,t)I < const . 6 ,

c 
where x = x is a grIdpoint with 6 < x~ < 6 + h. This proves the
theorem.

For steady state calculations we have

Theorem 2.3. For fixed k,h the scheme (2.1), (2.8) is weakly

convergent as n -‘ i.e. the limit function w°° depends on the

initial values

Proof. We write (2.1), (2.8) again in the matrix form (2.5). An
easy calculation shows that z = 1 is a simple eigenvalue corresponding
to the eigenfunction $ = const..AU the remaining eigenvalues satisfy
again ~ ‘C 1 — 6 < 1. This proves the theorem.

C Thus the steady state depends on the initial function f(x). If we
replace f(x)  by f(x)  + const . then also the steady state changes

• by this constant . Observe that the rate of convergence is the same as
in theorem 2.1. -‘

• As a third alternative we consider

(2.13) g, h D v ~~~~ — 0

i.e. the boundary values are given on the “wrong side”. This corresponds,
for example , to the subsonic case in fluid mechanics where all the
variables are prescribed on the inflow side . In a similar way as theorem
2.2 on can prove

—
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Theorem 2.Z.~ Assume that the conditions of theorem 2.2 are satis-

fied. Then the solution of (2.1), (2.13) converges for h -“ 0 on any

finite domain 6 < x < a, 0 ‘C t ‘C T to the solution of (1.2), (2.9).

For steady state ~alcu1atiom ve have

Theorem 2.5. For fixed k,h the solution of (2~1), (2.13) converges

for n + ~ to the unique steady state w
~
°° g, v 0 ,l,2,.~ 4 ,N ~f and

only if N is odd. Also, the speed of convergence is extremely slow.

Proof. The condition (2.7) for the existence of a nontrivial

solution becomes now

(2.114 ) (K1
_l)K1

Z
~~ = K

2
N 1

(K
2
.l)

C Using (2.6) and. (2.11~) an easy calculation shows that there is one

elgenvalue of the for~n

A N-lz 2. + (_ l) NX 
~~~ 

, A=k/h,

while all the other eigenvalues satisfy Izi < ]. — 6 < 1. Therefore, we
obtain growing solutions if N is even, but converging solutions it

N is odd. The rate of convergence in the last case is determined by

the above eigenvalue, i.e. it is extremely slow. Furthermore , the
solution will contain oscillatory components near the boundary.

For converging solutions the steady state is given by

C (2. 15) W~ C~K1~ 
+

• ‘where K1,K2 
are the roots of

K
2 — 1 + X (K—1)2 = 0, i.e. K

1 
= (l—A)/(1+A) , K

2 
— 1

must satisfy the boundary conditions (2:13). Therefore

+ a2 = g, a1K1
1
~~ (K 1—1) + a2K2~~

1(K2-l) = 0

which gives us U1 = 0, U2 — g end the theorem follows.

- JT~~
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By theorem 2.l& the solution of (2.1), (2.13) converges tc tr•.

solution of (1.2), (2.9) on every finite time interval . Since

v(x,t) f(a)  for t > a this seems to indicate a contrs4~ ctLoc

the result of theorem 2.5. However, it can be explained in the

following way. For fixed values of k,h, a typical calculatior -

after a relatively short time give a good approximatic i of v (s,t

f(a), but it will later change very slowly and finally con verge t’ p

The following calculation illustrate this point.-We compute t~•. sc..~~--

of (2.1), (2.13) on the interval 0 < x < 1~ using

0 - n n= = sin x~ , V
0 

= ~~+VN_ 1 =

as initial and boundary conditions. The figures show v(213,t )  as
function of time in two different scales . It is very tempting tr eon-

aider the solution as a steady state after a relatively short t iLt

• However , as can be seen from fig. 1, the solution at t • 2 baa aotr..~~
to do with the final steady state.

We can also use higher order extrapolation at the boundary

(2.16 ) (~~~~)P w0~ = (hD )P VN l ~~ 
= 0 , p > 1.

The condition (2.1) for a nontrivial solution becomes

(K1—l)~(K2—1)~(K2~~~-1c1~~~) 
= 0

C and there is an eigenvalue z = 1 of order p which has only ar~e ~ •
solution. Therefore there are solutions which grow like t~~~ and for
steady state calculations no convergence will occur.

() For calculations on a finite time interval, we can , using the sw
technique as in theorem 2.2 , prove that the solutions converge for

h • 0 to a solution of (1.2) which satisfies the boundary condition

0

The results in this section can also be generalized to squatioss

9v/3t • ~ ~v/~x, a > 0

~T::~~~~~~~~
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$

and difference schemes

vv
n+1 ( I4ukD0+8k2D~Djw,~,7

Stability for the Caucby problem requires

~~ , A
2 

‘C 2~ where A ak/h.

- We note in particular, that for the case of overepecification at
x 0 , we get convergence to a steady state if and only if at least

•( one of the following conditions is satisfied.

1) N is odd, 2) A < 28

C Therefore, by strengthening the von 1~èunann condition, we can avoid the
restriction on N. However , the speed of convergence is still extremely
low.

U

sin l — 

• 

*

‘ 0

C.) .
•‘ t

2’

- 

fig. 3.

$ ! 
- 

*
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3. Difference approximations fOr systems with constant coefficients.
• In this section we will make a few conmients on the numerical, solution

of systenm

~ A ~;/a x , 0 ‘C x ‘C a

where = (~~1) ,•~~ , (h1 ) ) , is a vector function with n components

and A. a constant nxn matrix. We assume that A can be transformed
to diagonal form and that the eigenvalues of A are real. and nonzero,

• i.e. there exist a nonsingular transformation S such that
-I

(A~~~~o
(3.1) A •S 1A S ”  (

c k, ° A2

where

(x~, o . . . . . o (x~~1 o . . . . o

(3.2) > o , A2 = f °  
A~~2 o . . o  < 0

are positive and negative definite diagonal matrices respectively.

C The Lax-Wendroff scheme is given by

- 
(3.3) U”]. 

— (I+UD+k2A2D D  )w , 0 ‘C V ‘C N

0 To determine its solution we have again to specify boundary condit ions
at x 0 and x a. If the boundary conditions are of the same type
for all components of v, for example

~ ~~+WN~j  - 0 ,

then all the results of the last section apply . We need only to int roduce
new variables — to obtain

_ _ _ _ _ _ _ _ _ _ _ _- - ~~~~~~~~~~~
.•_ 

-
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n+l (I+~~D +2A2D D  )w
~~ 

- 

, 0 ‘C v < N

(3.5)

— g, hD+WN_l = o

i.e. n decoupled problems of type (2.1), (2.13).

This transformation can also be used to discuss general boundary
conditions . For example , specify at x a 0 correct boundary conditions

•; end extrapolate at x = a all variables . Then , after transformation ,
these boundary conditions become

(v0
11)~ = R

0
(w
0
1
)~ + ( II )fl (~~~~)~ (w0

1)~ Q(~~~)
P(w ”)fl

(3.6)
h D w  •0.

L + N-].

Here w’, w~~ correspond to the partition of A and R, Q denote
(n—z~cr and r~(n—r) matrices respectively. Then w converges to a
solution of

( 3.7) avlat = A

with boundary conditions

(3.8) v~~(o ,t)  R0v’(O ,t) + g0~~(t) ,  avt (a ,t)/dx 0

By (3.7) the relation ~v
1/~x 0 implies ~v’/at 0 and therefore

• (3.9) v1(a ,t ) E vt (a ,0)

C, . Thus in steady state calculat ions the steady stat e depend on the
initial values .

~

—

— •- 

~
. 

-••—
“I  — — S  ,r __’~ _ -._J — •



Ii. General considerations for problems in one space dimension. In
this section we consider hyperbolic systems

u/at .~A(x,t)au/ax

with variable coefficients in the quarter space 0 < x ‘C , t > 0

where the matrix A depends smoothly on x,t. We assume that there is

• a. smooth transformation S(x ,t ) such that (3 . l) , .(3 .2)  hold for every
fixed x,t. Then we can introduce new dependent variables U = S 1u and

- 
- obtain

(

3u/3t = A au/ax + Bu, B = —s ’as/at + 8 1A as/ax

For ~ = 0 initial values

(14.2) u(x,0) a f(x) , 0 ‘C x ‘C

and for x 0 boundary conditions

(14.3) u’1(0,t) = R0u
’(O,t) + g0

1
~(t) , t > 0

are given . Here f(x) ,  g0
hi (f)  are smooth functions, u’ • ~~~~~~~~~~~~~~~~~~

— Cu 1)
,...,U

(n1)), correspond to the partition of A , and

is an (n-r)xr matrix. Thus the number of boundary conditions is equal
to the number of characteristics with enter the region x > 0,t ) 0.

0 If we vent to solve the above problem numerically we have to replace
the infinite interval 0 ‘C x ‘C ~ by a finite one. There are two ways

to do this.

0 - 1) Determine some transformation of the independent variable x
vh.tcb transforms 0 < x < ~~ into 0< x < a .

2) Replace 0 < x ’ C~~ directly by 0 < x < a  and find at x a a
a function g,~ (t )  such that the solution of

(14.14) av/at • A av/ax + By’, 0 ‘C x < a , t > 0

‘with initial conditions

(14.5) v(x,O) f(x) ,

- - — —~~~ •~i~~
• -_-_ — -
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I

end boundary conditions

( 14.6) v11(0,t) R0v
1(0,t)  + g~~

1
(t) , v1(a,t) = g~~(t) , t ~ 0

differs at most slightly from the solution of the original problem

Connected with the above equations is the following problem.

Consider the system (14.1)

(14.7) ay/at • A 3y/3x + By, ~ > a, t > 0

C
for x >  a with initial values

(14.8) y(x,0) • f(x) , x > a

• and boundary conditions

(14.9) y11(a,t) = g,~,
H(t)

We can express the solution u(x,t) of (14 i)— (14.3) with help of

v(x,t) and y(x,t). The following lemsia is obvious .

Lenina 14.1.

(v(x,t) , x < a
(4.10) u(x,t) — .1 , t > 0,17(m ,t)  ,

if and only if -

(14.u) v1(a,t) a g~~(t) • y’(a ,t) ,  v~~(a ,t) g1~’(t) — y~~(a,t)c -

-

We can state this result in another way . Let f(x) be fixed. Then

the problem ( 14 . 7)—( 4 .9 )  has for every g1~~(t) a unique solution

y(x,t). In particular, y1(s,t ) is uniquely determined by ytt (a,t)
Thus there is a 1in~ar operator R1(t) such that

(14.12) yt(.,t) •.R1(t)y11(a,t) + bt(t) . 
-

I

~~~~~~~
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Here b1(t )  is determined by f(x) and R1(t) depends on y~
1(a ,F )

• for 0 ‘C ( ‘C t. Assume that R~, and b’ are known. Choose the function
I

83 Ct) in (14.6) such that 
-

(14.13) v1(a ,t)  R1(t)v~~(a ,t) + b1(t)

We have

Lemma 14.2. u(x,t ) • v(x,t) for 0 <, x~~ a, t > 0 if and only if

C (4.13) holds . Thus (14.13) can be considered as the missing boundary
condition .

Proof. Assume that v(x,t) satisfies (14.13). Choose g1
H(t ) in

(14.9) such that y~~(a,t) = g1~~
(t) = v~~(a,t). Then by (14.12) and (14.13)

also y (a ,t-) = v (a ,t)  and by lennna Is.]. we obtain u(x,t) v(x,t)
for 0~~ x ,.< a,t > 0. Conversely, if u(x ,t )  is a solution of
(14.l)—(Is.3) then it is also a solution of (ls.7)—(14.9) and must satisfy

(14.12). Therefore, if u(x ,t) = v(x,t) for 0 ~ x <  a,t > 0 then

v(x ,t)  must staisfy (14.13). This proves the lemma.
In general R1(t) ,b1(t)  are very complicated. There are only some

special cases where R1 and b’ can be represented in a simple way.

1) r = 0, i.e. all eigenvalues of A(a ,t)  are negative, i.e. a].].

characteristics at x = a point out of the region 0 ~ x ~ a,t > 0. In
this case y1’ = y and the relation (14.12) is empty. Therefore v(x,t)

(.1 does not need to satisfy any boundary conditions at x = a.

2) r> 0 but A(x ,t) — A(a) is a constant matrix for x ~ a. Then
the transformation S is independent of x ,t and B 0 for x a.
Therefore we can compute the first r components of y(x ,t) explicitely.
They are given by

y~
3
~(x,t) — r~ ’~ (~+A~t) ,

leading to , 
-

- —  
~~~~~~~~ — f~

J
~ (~+A~t) , j1,2,...,r. - 

— ‘ ‘
~~~ 

________________________

- I -

-

- 5 - ~~~~~~~~~~~

-•‘

~~~~~~~~~~~ - - - -  - -
~~~~~~~~~~~~~~~~~~

-— - -  —
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The relation (14 12) holds with R1 0 and bt (f~~~(a+A1t),. . ,f
(r)(5,~ t))’ .’

It is clear that v(x,t) depends very much on the initial values
for x >  a. There is only one simple case, namely

f(x)~~~çEconst . for x~~~a.

Then (I~.l3) becomes

I I a)(Is.lIs) v (a,t) • f . 
-

• (14.lle ) is equivalent with

I(14.114) By (a,t)/Bx 0

because (4.114)’ implies Bv1(a,t)/Bt = 0, i.e. v1(a,t)  = v1(a ,0) = f~~
Thus the boundary conditions (3 . 14) ( extrapolation of a].]. the variables
at x = a) can be used.

Without restriction we can assume that - f~ 0. Otherwise we would
consider the function u = ii - f~, . Then also b’ 0 and the relation
(14.13) becomes -

v’(e ,t)  • 0 , for t > 0 •

The last relation means that we set the characteristic variables
associated with the “ingoing” characteristics equal to zero, or as

B. ~~gquist and A. Majda (1] call, it, that no reflection takes place
at the boundary . Therefore this principle is useful if we subtract from
the solution its constant state at infinity.

From now on we shall always make
C) Assumption 14.1. f (x)  0 for x > a, i.e. bt(t) — 0.

Assume that A depends on x,t also for x ~ a. Then B + 0 and
in general y’, y’t are coupled and we cannot determine E1(t)  without

• making detailed calculations of y(,c,t) .  Only if A(x ,t)  converges to
a constant matrix A0 as x.  ~ we can do better. We make

• a)
v (s,t) can also be obtained in a. fairly simple way if we r.quirs
only that B has the form

• /B

~~~ 
B~~J

- 

~~~~~~ 
— -

- ~~~~~~~~

~ ‘
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Assumption Is.2. The matrix B(x,t) can be written in the form

(14.15) B(x,t) a $(x)B1(x ,t)

where •(x) is a scaler function with

(14.16) f I$ (x)Idx<c

- 

- 
- and -

( (14.17) IIBI ) sup 1B1(x,t)1 < 1
a<x<o~,t>O

Here ~B1
(x ,t)l denotes the maximum norm at the pøint x,tL

L Assume for example that A is of the form

A(x) A0 + -4 A1(x ,t) , x >  a

and that the eigenvalues of A0 are a].]. distinct. Then S is of the

form

$ — + -4 S1(x ,t) , i.e. B 4 B1
Thus

• const ,/x~ , J IO kx  ‘C const./a

We need

• Lenma 14.3. Consider the system

C) By/at ~ A By/Bx + $(x)G (x ,t )

for x >  a., t > 0 with zero initial and boundary conditions

y(x,O ) O  for x. > a , y~~(a,t ) o  for t~~~O .

Asai~ e there is a constant ~ ) 0 such that0

(14.18) m t  A ,~, A •

L _ _ _ _ _ _ _ _ _ _- _ _ _ _ _ _ _ _------ _ ----—

~~~~

-

~

- ._ .‘s_~p _,rt’ -~~~~~~~~~~~~ s_,,_ , , -~~~~-
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lu ll < c/A 0 u G h  h u t  •~ ~7
(i)

1
x,t ,i

Proof. We need to piove the estimate only for scaler equations

• By/Bt • A(x ,t) By/Bx + ~(x)G(x ,t)

• with appropriate boundary conditions. Using the method of characteristics
we obtain

(
dy/dc $(x)G( x ,t)  , dt/d8 • 1 , dx/d.s • —A (x,t)

Therefore

C., 
- 

so
• f J  $ (x ( s )) G (x ( s) , t (s))ds l < (fGfl f ~g(x(s))~ds <

0 0

flafl I g(x)f~A~ ’(x)~dx (c/A 0) u G h

which proves the lemma.

- The last lemma gives us

Theorem Isa].. Assume that the assumptions 14.1 and 14.2 are valid and
that (14.18) holds. If c/A0 ‘C 1 then the solution of ( 14. 7) can be obtaind
by the iteration process

# 0
— A By~~1/Bx — $(x)B1(x ,t)y~

4 (14.19)

0 y~~1(x ,0) — 0 , y~~1(a ,t ) • g~~(t)

n0,l,... ; y0(x ,t ) ~ 0

Proof. Let 7 1 Y — y . B y lemaeJs.3 
•

117n+1M ~J ( c I A0) i t ;~i i  , n.l,2,...

sad the convergence follows. This proves the theorem.
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In the usual way we obtain the estimate -

I IY’7~,I I ~i~l 
171 1 $ l cA  I l~~-Y~II •

end by (Is.19) 
-

• y~(z ,t ) 0
- - (14.20) -

3y~
1/Bt — A2 By~~/Bt = 0 , y~~(x ,O ) 0, y~~(a ,t ) g~

1(t)

I Thus if we allow an error of order ~)(c/A0) extrapolation or the
principle of no reflection at x = a is appropriate. If this error
• Iis not acceptable then we have to compute y

2 defined by

C (14.21) ay~/ t 
— A1 By~/Bx = •B12y~~, y~(x,O) = 0,

where B12 is defined ‘by

fB11 B12 
-

B22

Then

I II 2117 
~2 

I I  O((c/A0) 
)

and we assume that this error is tolerable.
If one is interested in the whole time dependent process then not

• 
~ueh is gained because to compute y~(a,’t) as a. function of g~~(t)

() • we have to solve ( 14.20) and. (14.21) completely. Thus one should instead
make a. so large that an error of order (3(c/A0) can be tolerated.

There is one exception. If cI B121 I is small, i.e. the in— and
outgoing waves are almost decoupled, then y

~ is almost zero and the
conpiete solution is essentially given by (4.20). In this case the

principle of no reflection is appropriate.

- The situation becomes more fe~ourable if we are only interested
in the steady state solution, i.e. consider th’ case that

g~~(t)  — g~~(c’) and B1(x,t) ~ ~3 (x), •(x,t) + 1(x)

- 
—‘ 

- —___—_•• 
—• -- — — 

- 
-

~~~~
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Then for ~~~~

0, y~’~~ ~~I(,) y~(x) + f $ A~~ B12dF g
~1(.o)

Thus y2 satisfies in the limit the relation

- 

y~(a,t) C g~~(u#), C = f • ç1 B12d~

Therefore , by lenma 14.2, we should use for v(x ,t) at x a the
boundary conditions

yt (a ,t)  C v~~(a ,t )  .

Observe , however, that one has to know the asymptotic expansion of A
C1 in detail to compute C.

H o

I !  

•
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5. Problems in two space dimensions. We start with an example. Con-
sider the system

(5.1) 
(+1 

~
) 
~ 

+ (
~ 

‘:) 
~

on the domain (2 as given in fig. 1 or fig. 2. For t = 0 initial
values

(5.2) u(x,y,0) = v(x,y,0) , (x ,y)~~ (2 , t 0

c End for (x ,y) ~~ (2 boundary conditions are given . In particular we
assume that on B

(5.3) v(0,y,t) h(y) , t > 0, x = 0,

and on B3,B4

(5.4) u(x,y,t) a 0, (x ,y) E B3 U B4, t > 0

Without restriction we can assume that B3,B14 are given by x > a ,y
and x > a ,y — 0 respectively.

We want to determine the solution of the above problem on (2~ only.
C Therefore we need one relation between u,v on B2. The boundary

conditions (5.14) imply that for x > a the solution of our problem can
be expanded in Fourier series

(5.5) u } 
~(x,w,t)sinwwy, v — 0(x ,t ) + ~ (x ,w,t)cos1n~ -

Introducing (5.5) into (5.1) gives us for x ,~~~ a

(5.6) 3%/at —

-

• 

-
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+ 1 0  0— 1

ft ” (
~ ~

) ~ 
+ ,

~( 
) ~~,

For every fixed frequency w ~ 0 the system (5 .7) is of the same form
as the onedimensional problem (14.1) and the results of the last section

• apply. Therefore if we are interested in the whole time dependent process
not much is gained by restricting the problem to the dcmain except in
the case that ~ (w ,x ,t)  can be neglected for w l ,2 ,...;.Then the
solution of our problem is essentially independent of y.

The situation is again different if we are only interested in the
steady state. Then we can replace (5.6), (5.7) by

C (5.8) B 0/Bx = 0

+1 0  0 - 1C —l 
+ ww ( ) = 0 ,

The solution of (5.9) is given by

A -c~,7r ( x-a)Au(x ,w ,t)  • —e v(a,w,t), v(x,w,t) = e v(a ,w ,t)

which gives us for x a

C (5. 10) ~I(a ,w ,t) — 4(a ,w ,t)

- - 

Therefore we have determined the desired relation

C’ u(a ,y,t) • Rv(a ,y,t)

because if we know v then we can expand it in a cosine series and by
(5.1.0) we obtain the sine series for u. This process can be performed

srically by using the fast Fourier transform.
It is not necessary that the coefficients of (5.1) are constant . We

- also consider systems 
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IA (y) 0 \ (0
~~_ 1 1  L%! + I
at I J 3 x  J a y

\ a(y) 0 f
where the coefficients depend on y. The steady state solution can
again be solved in terms of eigenfunctions

— e~~ ~(y) , Reelic ‘C 0,

- 

- 
• 

- 

which gives us the desired. relation between U and v on B2.
Whether this procedure is feasible numerically depends on how easy it
is to compute the eigenfunctions and how many are needed to represent
the relation between 11 and v.

All the results can be carried over to general hyperbolic systems

C 3w/3t a A
1
3w/3x + A2 3w/3y

Again, if one is interested in the complete time dependent process thcn
not much is gained by restricting the problem to the domain (2. except
in the case where we can neglect A2 3wf3y. If we are only interested
in the steady state then we can obtain the desired relations on B2
between the components of w by solving the steady state equations

A1 3w / 9 x + A 2 3w/9y~~~0

in terms of eigen,function expansions.
We want to point out that there are problems in two space dimensions

C which can be transformed on one—dimensional form. Consider for example
- 

equation (5.1) on some domain (2 containing the origin. We introduce 
-

polar coordinates by

.0 x r cosO
y r sinO

and obtain from (5.1)

— 
(cose 51n9

\ ~ + ~ 
f_ sine cos8 ’~ ~~

- 

-— 
~~ ~~~~ —cosO ) 3r r I~~coaO sin8 )~~~

‘ -



—5. le—

Defining new dependent variables by

cos! sin !\
v w j  

~$ uET (0)u
sin —cos

we get the equivalent system

- ~~fi o\ 
~~~~~~~~ 

(— sinO cos0~) P(e)- 3t 
~~ —1/ 3r r cosO 

- 

sinO!
- 

11 Q\
4~~~ l 1 u .

~~~~ -11

C. Therefore , if the initial data are such that u(r ,0 ,0) is independent of
e , then u(r,B,t) is independent of 0 for all t, t > 0. In particular ,
we get a nonreflecting boundary condition if u’ 0 is specified at
all points on 3(2

I C

1.0
S

- --__ ‘_ ,__

~

_ 
- ---



References

1. 3. ~ igquist and A. Majda, Absorbing Boundary Conditions for the
Numerical Simulation of Waves. Math. Comp. vol. 31, No 139 (1977).

2. H.—0. Kreiss, Difference Approximations for the Initial-Boundary
Value Problem for Hyperbolic Differential Equations. Numerical
Solutions of Nonlinear Differential Equations. John Wiley & Sons ,
Inc. (1966) , pp. 1141 — 166.

3. S. Parter , Stability, Convergecne and Pseudo—Stability of Finite—
Difference Equations for an over-determined Prohl.eiu. Ibimer. Math.,

C 
vol. 14 (1962), pp. 277 — 292.

14. P. J. Roache, Computational Fluid Dynamics. Hermosa Publishers
(1972).

‘ 0

.0 -

1 ’
- . 1

_ _ _ _  -


